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Abstract. In this dissertation, the problem of robust regression is stud-
ied, for both the linear and the nonlinear case. For the former case, a
novel algorithm, Greedy Algorithm for Robust Denoising (GARD), which
is based on sparse optimization techniques, is derived. Moreover, theoret-
ical conditions, which guarantee the identification of the outliers and a
bound on the estimation error, are provided. Next, we focus on the non-
linear case, where it is assumed that the unknown nonlinear function be-
longs to a Reproducing Kernel Hilbert Space (RKHS). A robust scheme,
Kernel Greedy Algorithm for Robust Denoising (KGARD), which shares
the same concept with GARD, is proposed. The algorithm is compared
against other cutting edge methods via extensive simulations, where its
enhanced performance is demonstrated. In addition, theoretical results
regarding the identification of the outliers are provided. Finally, the pro-
posed robust estimation framework is applied to the task of image de-
noising, where the advantages of the proposed method are unveiled. The
experiments verify that KGARD improves the denoising process signifi-
cantly, when outliers are present.

Keywords: robust linear regression, robust nonlinear regression in RKHS,
greedy algorithm for robust denoising, kernel greedy algorithm for robust
denoising, image denoising, outliers

1 Introduction

At the heart of Machine Learning is the task of regression or regression analysis.
In a classic regression task, given a set of training data, the goal is to learn a set
of unknown parameters in order to make predictions. In simple words, the task
could be seen as a curve fitting problem. Consider a set of training points (yi,xi),
yi ∈ R and xi ∈ R

M for i = 1, . . . , N. The task is to estimate a function, f, whose
graph fits the data. The target function, f, of the independent variables, x, is
called the regression function and can be either linear or nonlinear. The difference
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between regression and classification is that in regression the dependent variable
belongs to an interval in the real axis (or region in the complex plane), while in
classification it is a discrete variable.

Regression analysis is widely used for prediction and forecasting. It is also
used as a means to extract information concerning the degree of dependence
among the dependent (output) and the independent (input) variables. Thus,
useful information and related implications of such dependencies can be revealed.

The earliest form of regression was the method of Least Squares (LS), which
was published by Legendre in 1805 and by Gauss in 1809. Legendre and Gauss
both applied the method to the problem of determining the orbits of comets,
based on astronomical observations. Many techniques that perform regression
analysis have been developed, since then. Familiar methods such as linear re-
gression and ordinary Least Squares regression belong to the parametric class
of learning techniques; that is, the model function is defined in terms of a finite
number of unknown parameters that are estimated from the data. In contrast,
nonparametric regression refers to techniques that bypass the need for explicit
parameterization of the unknown functional dependence. For example, the re-
gression function can be assumed to lie in a specific set of functions, which may
also be infinite-dimensional. A popular example, that will be adopted in the
current thesis for the estimation of a nonlinear function, is to assume that the
regression function lies in a Reproducing Kernel Hilbert Space (RKHS).

The performance of regression methods, in practice, depends on the form of
the data-generating mechanism and how this relates to the regression model be-
ing used. Since the true form of the data-generating process is generally unknown,
regression analysis often depends, to a large extent, on making assumptions con-
cerning this process. Regression models, that are designed for prediction, are
often useful even when the assumptions are moderately violated, although they
may not perform optimally. However, if our goal is to make accurate predictions,
we should look for a model/method that is robust enough, i.e., it can tolerate
abnormalities on the data so that the estimation is not significantly affected.

The notion of robustness, i.e., the efficiency of a method to solve a learning
task from data under noise uncertainties of various types, has been a major issue
in the scientific community for over half a century. The goal is to minimize the
effect of the observations that have been corrupted by unexpected high values of
noise, known as outliers. Outliers are often regarded as erroneous measurements
that deviate greatly from the rest of the observations. This is due to the fact:
either their values are heavily influenced by another source or they are generated
by a different mechanism/distribution.

In such cases, classic estimators, e.g., the Least Squares, are known to fail to
perform well. This problem was originally addressed since the 1950s and it was
actually solved more than a decade later, by Huber. Eventually, it led to the de-
velopment of a new field in Statistics, known as Robust Statistics. However, the
need for development of robust estimators was not only limited within the Statis-
tics scientific community. Similar tasks (involving robust estimators) emerged in
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the context of many fields such as Physics, Medicine, Biology, Engineering and
Computer Science, to name a few.

The robust tools that have been developed over the years for handling out-
liers can be classified into two major categories. The first one includes tools that
rely on the use of diagnostics, whereas the second direction is based on robust

regression methods. Diagnostics and robust regression have the same goals, only
obtained in the opposite order; both approaches have a long history in the field
of Robust Statistics. Lately, a different approach has emerged. The recent devel-
opment of methods in the spirit of robust analysis owes a lot to the emergence
of sparse modeling methods, during the past decade.

Sparsity-aware learning and related optimization techniques have been at the
forefront of the research in signal processing, encompassing a wide range of top-
ics, such as compressed sensing, signal denoising and approximation techniques.
Sparsity is closely related to sufficiency or economy of a representation, a mech-
anism that harmonizes with nature, which tends to be parsimonious. At the
heart of this problem lies an underdetermined set of linear equations, which, in
general, accepts an infinite number of solutions. Imposing sparsity, is interpreted
as seeking for a solution where only a few of the unknown coordinates, which we
attempt to estimate, are nonzero. There are two major paths, towards modeling
sparse vectors/signals. The first one focuses on minimizing the ℓ0(pseudo)-norm
of a vector, which equals the number of its nonzero coordinates. However, since
this is a non-convex optimization task, approximate methods have been estab-
lished. The family of algorithms that have been developed to address problems
involving the ℓ0 (pseudo)-norm, comprises greedy methods, which have been
shown to provide the solution of the related minimization task, under certain
reasonable assumptions. Even though, in general, this is an NP-Hard task, it
has been shown that such methods can efficiently recover a solution in polyno-
mial time. On the other hand, the family of algorithms developed around the
methods that employ the ℓ1-norm, embraces convex optimization, providing a
broader set of tools and stronger guarantees for convergence. Both methods have
been shown to generate sparse solutions.

A more recent application of sparse modeling and optimization methods,
which is also the focus of this work, is that of signal denoising. There, one
is interested in recovering the original signal, which apart from the standard
inlier noise, e.g., Gaussian, has also been corrupted by outliers. The key to this
modeling is to assume that the outliers comprise only a small fraction of the
entire data set, thus the outlier vector is modeled as a sparse one.

The goal of this dissertation, is to address the task of robust linear and
nonlinear regression via sparse modeling methods, within the context of machine
learning. The proposed methods are built on the popular Orthogonal Matching
Pursuit algorithm (OMP), by imposing sparsity constraints on the outliers. In
particular, two novel robust algorithms are developed. One for the task of linear
regression and a second one for the task of nonlinear regression, where it has
been also assumed that the function to be estimated lies in a Reproducing Kernel
Hilbert Space (RKHS). Various experiments are performed, where both of the
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algorithms are compared against state-of-the-art methods. The obtained results
demonstrate their performance and highlight their advantages. Moreover, the
study of the algorithms has led to the establishment of sound theoretical results.
Finally, the focus is turned on the applications of the nonlinear regression scheme
to the task of image denoising. As a result, two methods are introduced for the
removal of impulsive noise. The most significant results of this novel robust
approach are outlined next.

2 Robust Linear Regression

For the linear regression task we have assumed that the output data are cor-
rupted by inlier and outlier noise. Moreover, we have assumed that the outliers
are only few compared to the number of the data (thus the outlier vector can
be modeled as a sparse one) and that the number, N , of the available data is
sufficiently greater than the number, M , of the unknown coefficients. The pro-
posed algorithm is called Greedy Algorithm for Robust Denoising (GARD), and
it is based on the classic Orthogonal Matching Pursuit (OMP). The method al-
ternates between a Least Squares (LS) optimization criterion and an OMP-like
selection step, that identifies the outliers. The theoretical results that have been
established for GARD are:

– The convergence of the scheme in a finite number of steps.
– A bound on the Restricted Isometry Property (RIP) constant, for the case

where only outliers are present, which guarantees that GARD successfully
identifies the outliers. Moreover, the method recovers both the regression
solution and the sparse outlier vector, exactly (with no error), under the
existence and uniqueness conditions.

– A second bound on the Restricted Isometry Property (RIP) constant, for
the case where the data is corrupted by both inlier and outlier noise, which
guarantees that GARD successfully identifies the outliers, assuming that the
inlier noise is bounded.

– Performance bounds on the approximation, which guarantee the stability of
the algorithm.

It should be noted that, the result concerning the identification of the outliers
in the presence of both inlier and outlier noise has been derived for the first time
in the robust regression framework.

Next, follows an extended set of experiments that are performed and demon-
strate the performance of GARD against other comparative cutting edge meth-
ods. For each method, we have computed the Mean-square-error (MSE) and the
Mean Implementation Time (MIT), while varying the fraction of the outliers.
The most significant results for GARD are:

– It attains the lowest MSE.
– It demonstrates enhanced robustness, compared to all other methods.
– It has very low computational requirements.
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(a): M = 100 (b): M = 100

Fig. 1: (a): The attained Mean-square-error (MSE) (in logarithmic scale-dB) ver-
sus the fraction of outliers in the output data. (b): Logarithmic scale of the Mean
Implementation Time (MIT) versus the outlier fraction. The number of the data
is N = 600.

In Figure 1 (a), the MSE (in dBs) attained by each method versus the fraction
of outliers is depicted, for a fix dimension of the unknown vector atM = 100. The
Mean Implementation Time (MIT) is also plotted in logarithmic scale in Figure 1
(b). Observe that GARD attains the lowest MSE among its competitors, while in
parallel it seems to be the most efficient, operating at the lowest computational
cost (the interesting “zone” is for fractions of less than 30%, that is 10%−20%).

Moreover, in Figure 2 the capability of KGARD to identify the outliers is
demonstrated. The green line pointing upwards corresponds to successful outlier
identifications, while the orange one pointing downwards corresponds to extra
indices that GARD has classified as outliers. In parallel, the relation of the
percentage of outliers to the bound of the RIP constant is shown (grey line).
Figure 2 (a) corresponds to the noiseless case, while in (b), the data is corrupted
by outlier and bounded inlier noise, as the resulting theorem suggests. It is
clear, that for small fractions of outliers the support is recovered (one-to-one
index), thus we conclude that the condition is valid (the RIP constant cannot
be computed).

Figure 3 (a) demonstrates the probability of recovery for each method tested,
while varying the fraction of the outliers. In Figure 3 (b), the phase transition
curves for each method are given. For each dimension of the unknown vector, we
have computed the fraction of outliers for which the method transits from success
to failure with probability p = 0.5. For example, for M = 100 (Figure 3 (a)), the
horizontal line at 0.5 corresponds to fractions of outliers (for each method) that
are located in the y-axis of Figure 3 (b) for the dimension of M = 100. Here,
it is clear that up to M = 200, GARD succeeds to recover the solution with a
higher probability than the rest of the methods.

Finally, in Table 1 we have measured the attained MSE for the case where
the noise follows a more general distribution. In columns A, B and C the noise
originates from the Lévy alpha-stable distribution, while in column D the noise
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(a): Noise: outliers only. (b): Noise: outliers and bounded inlier.

Fig. 2: The identification of the outliers and the relation to the theoretical bound
of the Restricted Isometry Property (RIP), δS . (a): The data is corrupted by
outliers only. (b): The data is corrupted by outliers and bounded inlier noise.
Moreover, the empirical error is computed and the relation to its theoretical
upper bound is depicted.
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(a): Probability of recovery for M = 100 (b): Transition from success to failure.

Fig. 3: (a): The probability of recovery while varying the fraction of outliers, for
the the dimension M = 100 of the unknown vector, θ

¯
, and N = 600 observa-

tions. As the fraction of the outliers increases, the probability for an accurate
estimation drops. (b): Transition from success to failure with probability p = 0.5.
A vertical line at M = 100 indicates the percentage of outliers (for each method
respectively) that correspond to the values of the x-axis for probability p = 0.5,
in (a).
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Table 1: Computed MSE, for various experiments. In tests A, B and C, the noise
is drawn from the heavy-tailed distribution alpha-stable of Lévy distribution.
In test D, noise consists of a sum of two vectors, drawn from 2 independent
Gaussian distributions with different variance, plus an outlier noise vector of
impulsive noise.

Algorithm Test A Test B Test C Test D

GARD 0.1772 0.0180 0.0586 0.690

M-est 0.2248 0.2859 1.844e+06 0.704

SOCP 0.4990 0.3502 5.852e+05 1.011

SBL 0.9859 58.3489 2.165e+06 1.292

ROMP 0.2248 0.2859 1.844e+06 0.704

consists of outliers plus inlier noise, with values drawn from two independent
Gaussian distributions with different variance.

3 Robust Nonlinear Regression

For the study of the nonlinear regression task we have assumed that the original
function to be estimated lies in a Reproducing Kernel Hilbert Space (RKHS).
Thus, we resort to simple manipulations by replacing the regressionmatrix with a
kernel one. However, since this is a nonparametric estimation task, the proposed
robust algorithm had to be modified again (with respect to GARD). The novel
scheme, Kernel Greedy Algorithm for Robust Denoising (KGARD), alternates
between a Kernel Ridge Regression (KRR) task and an OMP-like selection step.
The addition of a regularization term at the estimation steps cannot be avoided
and leads to a more complex theoretical analysis for the method. Thus, a different
path, than the previously reported one (linear case) is followed. The study of
this greedy-based selection scheme led to some interesting results:

– The solution to the regularized Least Squares task, which is performed at
each step, is unique.

– The establishment of a bound on the maximum singular value of the kernel
matrix, which guarantees that the method identifies the correct locations of
all the outliers, first.

However, the method still manages to recover the correct support of the sparse
outlier vector in many cases where the theoretical result does not hold. This leads
to the conclusion that the provided conditions can be loosen up significantly in
the future. The reason that the analysis is carried out for the case where inlier
noise is not present is due to the fact that the analysis gets highly involved. The
absence of the inlier noise makes the analysis easier and it highlights some the-
oretical aspects on why the method works. It must be emphasized that, such a
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theoretical analysis appears for the first time in the related bibliography. More-
over, in practice, where inlier noise also exists, the method succeeds to correctly
identify the majority of the outliers. The significance of the robust nonlinear re-
gression task, is demonstrated in Figure 4, where the estimation with KGARD
is compared against the non-robust Kernel Ridge Regression (KRR) method.

On the experimental section, various simulations are performed designating
the overall advantages of KGARD against its competitors. In the tests per-
formed, we have measured the MSE, the Mean Implementation Time (MIT)
and the number of correct and wrong indices that each method has classified
as outliers. In Table 2, the results of the estimation over the nonlinear function
f = 20sinc(2πx) are depicted, for various levels of noise (inlier-outlier). It is ob-
served that, KGARD attains the lowest MSE for most of the cases, except for
the fraction of outliers at 20%. It should also be noted that, for small fractions
of outliers the computational cost of the method is very low, and additionally,
it successfully manages to identify the outliers.
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Fig. 4: The significance of robust estimation: (a) Data corrupted by both inlier
and 10% of outlier noise. (b) The black and the red dashed lines correspond
to the uncorrupted data and the non-robust estimation performed, respectively.
The MSE over the training set is 10.79. (c) The black and the green dashed lines
correspond to the uncorrupted data and the robust estimation performed with
KGARD, respectively. The MSE over the training set is 1.21.

4 Applications to Image Denoising

Finally, we present the applications of the proposed method, i.e., KGARD, in
the context of image denoising. In particular, the goal is to approximate the
original image that is corrupted by Gaussian (inlier) plus salt and pepper noise
(outliers). To this end, the method has been slightly modified and adapted to
the task, so that no tuning parameters are involved; instead, the parameters
are automatically tuned by the method. As a result, two novel methods are
proposed for the task of robust denoising: a) a direct KGARD implementation
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Table 2: Computed MSE for f(x) = 20sinc(2πx) over the training and validation
set. Additionally, the percentage of correct and wrong indices that each method
has classified as outliers and the Mean Implementation Time (MIT), for various
levels of inlier and outlier noise, are evaluated.

Algorithm MSEtr MSEval Cor. ind. Wr. ind. MIT (sec) Inlier - Outlier

RB-RVM 0.0850 0.0851 - - 0.298 20 dB - 5%

RAM (λ = 0.07, µ = 2.5) 0.0344 0.0345 100 % 0.2 % 0.005 20 dB - 5%

KGARD (λ = 0.2, ε = 10) 0.0285 0.0285 100 % 0 % 0.004 20 dB - 5%

RB-RVM 0.0911 0.0912 - - 0.298 20 dB - 10%

RAM (λ = 0.07, µ = 2.5) 0.0371 0.0372 100 % 0.1 % 0.007 20 dB - 10%

KGARD (λ = 0.2, ε = 10) 0.0305 0.0305 100 % 0 % 0.008 20 dB - 10%

RB-RVM 0.0992 0.0994 - - 0.299 20 dB - 15%

RAM (λ = 0.07, µ = 2) 0.0393 0.0393 100 % 0.6 % 0.008 20 dB - 15%

KGARD (λ = 0.3, ε = 10) 0.0330 0.0330 100 % 0 % 0.012 20 dB - 15%

RB-RVM 0.1189 0.1184 - - 0.305 20 dB - 20%

RAM (λ = 0.07, µ = 2) 0.0421 0.0422 100 % 0.4 % 0.010 20 dB - 20%

KGARD (λ = 1, ε = 10) 0.0626 0.0626 100 % 0 % 0.017 20 dB - 20%

RB-RVM 0.3630 0.3631 - - 0.327 15 dB - 5%

RAM (λ = 0.15, µ = 5) 0.1035 0.1036 100% 0.7 % 0.005 15 dB - 5%

KGARD (λ = 0.3, ε = 15) 0.0862 0.0862 100 % 0.1 % 0.005 15 dB - 5%

RB-RVM 0.3828 0.3830 - - 0.319 15 dB - 10%

RAM (λ = 0.15, µ = 5) 0.1117 0.1118 100% 0.4 % 0.006 15 dB - 10%

KGARD (λ = 0.3, ε = 15) 0.0925 0.0925 100 % 0 % 0.008 15 dB - 10%

RB-RVM 0.4165 0.4166 - - 0.317 15 dB - 15%

RAM (λ = 0.15, µ = 5) 0.1186 0.1186 100% 0.3 % 0.007 15 dB - 15%

KGARD (λ = 0.3, ε = 15) 0.1001 0.1003 100 % 0 % 0.012 15 dB - 15%

RB-RVM 0.4793 0.4798 - - 0.312 15 dB - 20%

RAM (λ = 0.15, µ = 4) 0.1281 0.1282 100% 1.4 % 0.008 15 dB - 20%

KGARD (λ = 0.7, ε = 15) 0.1340 0.1349 100 % 0 % 0.016 15 dB - 20%

that can perform the estimation and b) a KGARD scheme combined with a
popular wavelet-based method, i.e., Block Matching and 3-D filtering (BM3D).
The latter scheme, which first performs the identification and estimation of the
outliers via the proposed algorithm (KGARD) and then it removes the remaining
of the noise via the BM3D, demonstrated enhanced performance in terms of
approximation. The results have been averaged based on the measured Peak
signal-to-noise ratio (PSNR).

In Table 3, various results are given for the denoising of the Lena image. In
Figure 5, the result of the process is clearly demonstrated. Finally, in Table 4
various results on the denoising of the boat image are depicted, while in Figure 6
the improvement achieved by the combined KGARD-BM3D method is observed.
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Table 3: Denoising performed on the Lena image corrupted by various types and
intensities of noise using the proposed methods, the robust RVM (RB-RVM)
approach and the state-of-the-art wavelet method BM3D.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 30 25 dB 10% 30.84 dB

RB-RVM σ = 0.3 25 dB 10% 31.25 dB

KGARD σ = 0.3, λ = 1 25 dB 10% 33.49 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 35.67 dB

BM3D s = 35 20 dB 10% 30.66 dB

RB-RVM σ = 0.4 20 dB 10% 29.09 dB

KGARD σ = 0.3, λ = 1 20 dB 10% 31.94 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 33.81 dB

BM3D s = 40 15 dB 10% 29.94 dB

RB-RVM σ = 0.4 15 dB 10% 25.85 dB

KGARD σ = 0.3, λ = 2 15 dB 10% 28.47 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 30.77 dB

Table 4: Denoising performed on the boat image corrupted by various types and
intensities of noise using the state-of-the-art wavelet method BM3D with and
without outlier detection.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 25 25 dB 5% 30.57 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 34.61 dB

BM3D s = 35 20 dB 10% 28.97 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 31.52 dB

BM3D s = 50 20 dB 20% 27.49 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 20 dB 20% 29.7 dB
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(a) (b)

(c) (d)

Fig. 5: (a) The Lena image corrupted by 20 dB of Gaussian noise and 10%
outliers. (b) Denoising with BM3D (30.66 dB). (c) Denoising with KGARD
(31.94 dB). (d) Denoising with joint KGARD-BM3D (33.81 dB).
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(a) (b) (c)

Fig. 6: (a) The boat image corrupted by 20 dB of Gaussian noise and 10% outliers.
(b) Denoising with BM3D (28.97 dB). (c) Denoising with joint KGARD-BM3D
(31.52 dB).

5 Conclusions

In this dissertation we studied the problem of robust regression, for both the
linear and nonlinear case, under the framework of sparse optimization tech-
niques. Two novel algorithms are derived, for each case, and they are com-
pared against state-of-the-art methods through extensive simulations. The re-
sults demonstrated enhanced performance, in terms of estimation and computa-
tional cost. Moreover, theoretical results, which guarantee the identification of
the outliers, are provided. Finally, the proposed framework is applied to the task
of image denoising, where it is shown that the process is significantly improved.
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